Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Geometry of the set of mixed quantum states
نویسندگان
چکیده
The set of quantum states consists of density matrices of order N , which are hermitian, positive and normalized by the trace condition. We analyze the structure of this set in the framework of the Euclidean geometry naturally arising in the space of hermitian matrices. For N = 2 this set is the Bloch ball, embedded in R 3. For N ≥ 3 this set of dimensionality N 2 − 1 has a much richer structure. We study its properties and at first advocate an apophatic approach, which concentrates on characteristics not possessed by this set. We also apply more constructive techniques and analyze two dimensional cross-sections and projections of the set of quantum states. They are dual to each other. At the end we make some remarks on certain dimension dependent properties.
منابع مشابه
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Method for measuring the entanglement of formation for arbitrary - dimensional pure states
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Improved lower and upper bounds for entanglement of formation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Inequalities Detecting Quantum Entanglement
We present a set of inequalities for detecting quantum entanglement of 2 ⊗ d quantum states. For 2 ⊗ 2 and 2 ⊗ 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d > 3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposi...
متن کاملMax - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Immunity space generated by a non trivial genetic - antigenic relation
متن کامل
Discrepancy of Products of Hypergraphs
Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011